Practical Security and Privacy for Database Systems

SIGMOD 2021 Tutorial

About the Presenters

The Success of DBMS

• One of the most important and popular systems for data management

• Many reasons:

Ancien

1960s

- Logical data model; declarative queries/updates
- Multi-user concurrent access
- Safety from system failures
- Performance, performance, performance

Attacks and Concerns

Let's fight it back, but ...

- Experts in security and privacy (S&P) are needed
 - Specialized solutions are not transferable
- Conflict goals
 - Pay a utility/performance cost
 - You don't get the best deal
- S&P is easily breakable
 - Data storage, query processing, output releasing

Focus of the Tutorial

MODULE 1 DEFINING S&P REQUIREMENTS

Provable S&P Requirements

"...do not end the age-old battle between attacker and defender, but it does provide a framework that helps shift the odds in the defender's favor. " --- J.K & Y.L

Defining S&P for DBMS

Greatly depend on the architecture setup and trust assumptions

Cloud service provider

Trust Assumptions

- Malicious party
 - May lie about following protocol
 - Intend to gain unauthorized access/update to private information

- Semi-honest party
 - Follow the protocol faithfully
 - But try to learn everything they can

Existing Techniques for S&P

Privacy guarantees	Client-server	Data federation	Cloud service provider
Input Data	Differential privacy		N/A
Query Evaluation	N/A	Local DP, Secure multi-party computation, TEE	
Queries	N/A	Private function evaluation	Private information retrieval

Semi-honest party

- Follow the protocol faithfully
- But try to learn everything they can

Setting #1: Client-Server

Client-Server Setting

- Trusted data broker (on behalf of data owners):
 - Have the true and plaintext data stored/processed on a central server according to a valid computation
- Untrusted client (e.g. data analyst)
 - Infer sensitive information about individuals from the released output by the data broker/ data owner
 - → "Data Privacy"

Conventional Privatization Method

De-identified records (e.g., medical)

> PATIENT INFO Name: DOB: 04/2005 Blood Type: AB+ SSN:

Statistics (e.g., demographic)

What could possibly go wrong?

Fundamental Law of Info Reconstruction [DN03] "overly accurate" estimates of "too many" statistics is blatantly non-private.

Techniques for S&P

Privacy Guarantees	Client-server	Data federation	Cloud service provider
Input Data	Differential privacy		N/A
Query Evaluation	N/A	Local DP, Secure multi-party computation, TEE	
Queries	N/A	Private function evaluation	Private information retrieval

Differential Privacy [D06]

• Goal: Protect the privacy of individuals in the database while releasing the output of a valid computation to untrusted client

[Machanavajjhala et al, ICDE 2008]

[Johnson et al, VLDB 2018]

- A provable privacy guarantee
- Trade-offs: accuracy and privacy

Setting #2: Data Federation

Conventional Data Federation

Conventional Data Federation

What could possibly go wrong?

Need complex legal agreements for data sharing

Many domains share data by centralizing private records with a data broker

Observing network traces and query runtimes leaks info about private inputs

Conventional Data FederationData Federation

Private Data Federation

- Untrusted client/broker (e.g. data analyst)
 - "Data Privacy"
- Semi-honest servers
 - Honestly evaluate query over federated data
 - Curious about other's input data and infer them via the computation (e.g, encrypted data, intermediate results, side channel information)
 - → "Computing with Confidentiality"

Computing with Confidentiality

• Goal: protect confidentiality of data *while* we compute queries over it in an untrusted setting

Provable privacy guarantees

Techniques for S&P

Privacy Guarantees	Client-server	Data federation	Cloud service provider
Input Data	Differential privacy		N/A
Query Evaluation	N/A	Local DP, Secure multi-party computation, TEE	
Queries	N/A	Private function evaluation	Private information retrieval

Setting #3: Cloud Service Provider

Conventional Cloud

- Untrusted servers
 - "Computing with confidentiality"

- Trusted client
 - Data owner and data analyst are the same party
 - Allow more information to be returned from the cloud to the client
 - "Private information retrieval"

Private Information Retrieval_[CGKS95]

- Goal: Client can retrieve an item from a server in possession of a database without revealing which item is retrieved
- Return entire DB: only protocol for information theoretical privacy in a single server setting [BB15]

Computationally bounded server [KO97] Multiple noncolluding servers [DGH 2012]

- Provable privacy guarantees
- Trade-offs: performance and privacy

Existing Techniques for S&P

Privacy guarantees	Client-server	Data federation	Cloud service provider
Input Data	Differential privacy		N/A
Query Evaluation	N/A	Local DP, Secure multi-party computation, TEE	
Queries	N/A	Private function evaluation	Private information retrieval

Semi-honest party

- Follow the protocol faithfully
- But try to learn everything they can

Additional Settings & Techniques

- Malicious party
 - Act maliciously
 - Unauthorized updates to the data storage
 - Incorrect query evaluation

Integrity	Client-server	Data federation	Cloud service provider
Storage	Authenticated data structures (ADS): e.g. Merkle tree, blockchain		
Query Evaluation	Zero-knowledge proofs (MPC), TEE, ADS		

Trade-off: performance and integrity

Summary

Privacy	Client-server	Data federation	Cloud service provider
Input Data	Differential privacy		N/A
Query Evaluation	N/A	Local DP, Secure multi-party computation, TEE	
Queries	N/A	Private function evaluation	Private information retrieval

Data owners (semi-honest or malicious)

Cloud service provider

MODULE 2A MPC & TEE

Overview

- Goal: protect confidentiality of data *while* we compute queries over it in an untrusted setting
- Attack vectors:
 - Data protection: Encrypt data and intermediate results
 - Side channel: Prevent leakage from the query's instruction traces and others

Computing with Confidentiality

- Why confidentiality is difficult? No one can be trusted:
 - Intend, capability, etc
- Technologies for confidentiality computation bring trustiness

φ: Side information

f(x,y) = intersection of x and y

Side Channel Information

- Program trace
- Data access trace

All leaks information! Some more less harmful

- Program execution time
- Intermediate result size

Often need to incur the worst-case cost
DATA AND TRACE OBLIVIOUSNESS

Program Trace

 $\mathbf{x} = \{60201, \, 60202, \, 60001\}$

 $y = \{60201, 60203, 60009\}$

Program trace depends on the input! res =0
for i in x:
 for j in y:
 if i == j:
 res +=1
 break;

Data Access Trace

def binary_search (val, s, t):
 mid = (s + t) / 2;
 if (val < mem[mid])
 bs(val, 0, mid)
 else
 bs(val, mid+1, t)</pre>

Data access trace depends on the input!

Definition

We say a program P is oblivious if there is an efficient algorithm S, such that for any input I to the program,

Trace(P, I) *is indistinguishable from* S(P)

An Oblivious Algorithm Example

41

 $z = \{60001, 60201, 60201, 60002, 60203, 60009\}$

z = x | | y

res=0

Trace-independent Sort z
for i in [0, len(z)-1):
 if z[i] == z[i+1]
 res+=1

Recent Works

- Oblivious algorithms
 - Graph-based computation
 - Specific data structures
 - Parallelism
 - More efficient sorting
- Oblivious RAM

φ: leakage profile

Program trace Data access trace Program execution time Intermediate result size

f(x,y) = intersection of x and y

SECURE MULTI-PARTY COMPUTATION

Our First Protocol: Private Sum

Security

Example Protocol

(In)Security

The protocol is not secure if

Classifications

- How many parties can collude?
 Honest majority, dishonest majority
- What can corrupted parties do?
 Semi-honest; malicious
- How many parties are guaranteed to obtain output?
 - Security with abort, fairness, Guaranteed output delivery

REAL

IDEAL

50

Common Building blocks

- Basic tools:
 - Garbled Circuit, Oblivious Transfer, Beaver Triple, Secret Sharing
- More complicated tools:
 - Private set intersection, function secretsharing, RAM-based secure computation

More Building blocks

• Private information retrieval

• Fully homomorphic encryption

• Zero-knowledge proof

MPC Materials

You can find almost all at <u>https://github.com/rdragos/awesome-mpc</u>

- Video Lectures
 - [1st,5th] BIU Winter School
- Open-source libs: first think about what you are looking for
 - How many parties?
 - What security model?
 - What programming language?

TRUSTED EXECUTION ENVIRONMENTS

Trusted Execution Environment

• Confidential computing for untrusted, remote hosts

Offers integrity guarantees too.

TEE Use Cases

Authentication on mobile devices

Digital rights management

Outsourcing business ops to the cloud

Microsoft SQL Server Always Encrypted Workflow

TEEs are everywhere...

- Intel SGX
- ARM TrustZone
- AWS Nitro Enclaves
- Apple Secure Enclave Processor
- Keystone Enclave

Related: AMD Secure Encrypted Virtualization (used by GCP)

TEE Application Setup

- DBMS partitioned into trusted and untrusted code
- Private data and app logic are sealed into enclave
- Enclave may read from untrusted app, but not vice versa!

Image source: Quarkslab's blog

TEE Features

Confidentiality for process and data.

Secure communication channels to remote hosts

Integrity: run on trusted hardware alone

TEE Building Blocks

• Attestation – verify enclave on untrusted host

- Encrypted Page Cache (EPC) memory accessible to enclave alone
- Instruction set (ISA) extensions

- Defining security guarantees for system
- Determines what parts of app need to be in enclave
- Partition data so that it fits in protected memory

TEE Design Pitfalls

Expensive to move data in and out of EPC
 – EPC is small ~ O(100 MB)

• No systematic way to partition a program's native and enclave code for crypto-strong guarantees

• Privacy-performance trade-offs

Example design questions for DBMS-over-TEE

- Should we protect the cardinalities of intermediate results?
- How do we make swapping data in and out of the EPC data-independent?
- How to not leak information with index lookups and writes?
- Should we make our queries private or our computation thereof alone?

TEE Vulnerabilities

- TEEs like all hardware are susceptible to cycles of finding new attacks and mitigating them.
- Sometimes need to fix attacks in silica.
- They remain valuable platforms for research.

Pros and Cons of TEEs

Pros:

- Efficient performance
- May parallelize over a set of enclaves

Cons:

- Vendor lock-in
- Side-channel leakage
- Security guarantees brittle since hardware fixes are slow

MODULE 2B DIFFERENTIAL PRIVACY

Outline

- Desiderata for Defining Privacy
- Differential Privacy (DP) Basics

Integration of DP into DB & Challenges

The Massachusetts Governor Privacy Breach [Sweeney IJUFKS 2002]

 Name SSN Visit Date Diagnosis Procedure Medication Total Charge 	• Zip • Birth date	 Name Address Date Registered Party affiliation Date last oted 	 87 % of US population uniquely identified using ZipCode, Birth Date, and Sex. 	
Medical Data Voter List Quasi- identifiers				

K-Anonymity: Avoiding Linkage Attacks

• If every row corresponds to one individual ...

... every row should look like k-1 other rows based on the *quasi-identifier* attributes

K-Anonymity

Zip	Age	Nationality	Disease
13053	28	Russian	Heart
13068	29	American	Heart
13068	21	Japanese	Flu
13053	23	American	Flu
14853	50	Indian	Cancer
14853	55	Russian	Heart
14850	47	American	Flu
14850	59	American	Flu
13053	31	American	Cancer
13053	37	Indian	Cancer
13068	36	Japanese	Cancer
13068	32	American	Cancer

Zip	Age	Nationality	Disease
130**	<30	*	Heart
130**	<30	*	Heart
130**	<30	*	Flu
130**	<30	*	Flu
1485*	>40	*	Cancer
1485*	>40	*	Heart
1485*	>40	*	Flu
1485*	>40	*	Flu
130**	30-40	*	Cancer
130**	30-40	*	Cancer
130**	30-40	*	Cancer
130**	30-40	*	Cancer

[MKGV 06]

71

Problem 1: Background knowledge

Adversary knows prior knowledge about Umeko

Adversary learns Umeko has Cancer

Name	Zip	Age	Nat.
Umeko	13053	25	Japan

Zip	Age	Nationality	Disease
130**	<30	*	Heart
130**	<30	*	Heart
130**	<30	*	Cancer
130**	<30	*	Cancer

Attacks using Background Knowledge

- Record-level Data
 - Netflix Data [[Narayanan-Shmatikov, 2008]
- Search Logs
 - AOL data publishing [Barbaro-Zeller, 2006]
- Graph/Social Network Data
 - Degrees of nodes [Liu and Terzi, SIGMOD 2008]
 - The network structure, e.g., a subgraph of the network.
 [Zhou and Pei, ICDE 2008, Hay et al., VLDB 2008]
Desiderata for a Privacy Definition

- 1. Resilience to background knowledge
 - A privacy mechanism must be able to protect individuals' privacy from attackers who may possess background knowledge

Problem 2: Privacy by Obscurity

• Many organization think their data are private because they perturb the data and make the parameters of perturbation secret.

Desiderata for a Privacy Definition

- 1. Resilience to background knowledge
 - A privacy mechanism must be able to protect individuals' privacy from attackers who may possess background knowledge
- 2. Privacy without obscurity
 - Attacker must be assumed to know the algorithm used as well as all parameters [MK15]

Problem 3: Post-processing

🌾 U.S. Department of Health & Human Services

AHRQ

Agency for Healthcare Research and Quality Advancing Excellence in Health Care

HCUPnet Healthcare Cost and Utilization Project

Free Health Care Statistics

HCUPnet is a free, on-line query system based on data from the Healthcare Cost and Utilization Project (HCUP)

The system provides health care statistics and information for hospital inpatient, emergency department, and ambulatory settings, as well as population-based health care data on counties

Create a New Analysis

Get Quick Statistics Tables 👔

Careers Contact Us

Home

Glossary

About Us

Español

Methodology

FAO

Our Partners

Find out more about HCUP

What's new with HCUPnet

The HCUPnet Web site has been redesigned. The new site has a modernized look and feel, a simplified process for querying data, fewer clicks to reach the same information, and more flexibility in changing the content and display of data you are viewing.

Email Updates

Q

Problem 3: Post-processing

Counts less than k are suppressed achieving k-anonymity

Age	#disc harge s	White	Black	Hispani c	Asian/ Pcf Hlnder	Native American	Other	Missing
#dischar ges	735	535	82	58	18	*	19	22
1-17	*	*	*	*	*	*	*	*
18-44	70	40	13	*	*	*	*	*
45-64	330	236	31	32	*	*	11	*
65-84	298	229	35	13	*	*	*	*
85+	34	29	*	*	*	*	*	*

Problem 3: Post-processing

Age	#disc harge s	White	Black	Hispani c	Asian/ Pcf Hlnder	Native American	Other	Missing
#dischar ges	735	535	82	58	18	1	19	22
1-17	3	1	*	*	*	*	*	*
18-44	70	40	13	*/	= 535 -	(40+236+229	+29)	
45-64	330	236	31	32				
65-84	298	229	35	13	*	*	*	*
85+	34	29	*	*	*	*	*	*

Desiderata for a Privacy Definition

- 1. Resilience to background knowledge
 - A privacy mechanism must be able to protect individuals' privacy from attackers who may possess background knowledge
- 2. Privacy without obscurity
 - Attacker must be assumed to know the algorithm used as well as all parameters [MK15]
- 3. Post-processing
 - Post-processing the output of a privacy mechanism must not change the privacy guarantee [KL10, MK15]

Problem 4: Multiple Releases

• 2 tables of k-anonymous patient records

	Non-Sensitive		Sensitive		Non-Sensitive			Sensitive	
	Zip code	Age	Nationality	Condition		Zip code	Age	Nationality	Condition
1	130**	<30	*	AIDS	1	130**	<35	*	AIDS
2	130**	<30	*	Heart Disease	2	130**	<35	*	Tuberculosis
3	130**	<30	*	Viral Infection	3	130**	<35	*	Flu
4	130**	<30	*	Viral Infection	4	130**	<35	*	Tuberculosis
5	130**	>40	*	Cancer	5	130**	<35	*	Cancer
6	130**		*	Heart Disease	6	130**	<35	*	Cancer
7	130**	≥ 40	*	Viral Infection	7	130**	<u>≥</u> 35	*	Cancer
8	130**	≥ 40	*	Viral Infection	8	130**	<u>></u> 35	*	Cancer
9	130**	3*	*	Cancer	9	130**	<u>≥</u> 35	*	Cancer
10	130**	3*	*	Cancer	10	130**	≥ 3 5	*	Tuberculosis
11	130**	3*	*	Cancer	11	130**	<u>≥</u> 35	*	Viral Infection
12	130**	3*	*	Cancer	12	130**	≥ 35	*	Viral Infection

Hospital A (4-anonymous)

Hospital B (6-anonymous)

 If Alice visited both hospitals and she is 28, can you deduce Alice's medical condition?

Problem 4: Multiple Releases

2 tables of k-anonymous patient records [GKS08]

	Non-Sensitive		Sensitive	• 2 tables of k-anonymous patient records [GKS08]	
	Zip code	Age	Nationality	Condition	
1	130**	<30	*	AIDS	
2	130**	<30	*	Heart Disease	
3	130**	<30	*	Viral Infection	
4	130**	<30	*	Viral Infection	
5	130**	<u>≥</u> 40	*	Cancer	
6	130**	≥40	*	Heart Disease	
7	130**	≥40	*	Viral Infection	
8	130**	<u></u> ≥40	*	Viral Infection	
9	130**	3*	*	Cancer	
10	130**	3*	*	Cancer	
11	130**	3*	*	Cancer	Alice is 28 and she visits both hospitals
12	130**	3*	*	Cancer	• 4-anonymity + 6-anonymity \neq k-anonymity for any k
	тт	• .	1 4 / 4	``	$\frac{1}{1} \frac{1}{1} \frac{1}$

Hospital A (4-anonymous)

Hospital B (6-anonymous)

- Alice is 28 and she visits both hospitals
- 4-anonymity + 6-anonymity *⇒* k-anonymity , for any k

Database Reconstruction Theorem

• Informally: If *too many statistics* are released *too accurately,* the vast majority of the records in the (hidden) database can be *reconstructed*.

Reconstruction attack D is unknown, find D that best matches released statistics

Successfully demonstrated by US Census Bureau in 2019.

A Bound on the Number of Queries

- In order to ensure utility, a statistical database must leak some information about each individual
- We can only hope to bound the amount of disclosure
- Hence, there is a limit on number of queries that can be answered

Desiderata for a Privacy Definition

- 1. Resilience to background knowledge
 - A privacy mechanism must be able to protect individuals' privacy from attackers who may possess background knowledge
- 2. Privacy without obscurity
 - Attacker must be assumed to know the algorithm used as well as all parameters [MK15]
- 3. Post-processing
 - Post-processing the output of a privacy mechanism must not change the privacy guarantee [KL10, MK15]
- 4. Composition over multiple releases
 - Allow a graceful degradation of privacy with multiple invocations on the same data [DN03, GKS08]

Outline

• Desiderata for Defining Privacy

- Differential Privacy (DP) Basics
- Integration of DP into DB & Challenges

Differential Privacy

- Differential privacy is *not* an algorithm
- Differential privacy is *not* a property of the output
- Differential privacy *is* a property of the algorithm

Illustrative Application

name	gen.	age	HR	BP	
Alice	F	83	65	112	
Bob	М	50	85	135	
Carl	М	23	6 <mark>1</mark>	120	

Data from a medical study attributes include age, heart rate (HR), blood pressure (BP), results of various medical tests

Analyst identify risk of heart disease for different demographic groups

Illustrative Application

name	gen.	age	HR	BP	
Alice	F	83	65	112	
Bob	М	50	85	135	
Carl	М	23	61	120	

Input D

Algorithm A

Output A(D)

Medium

High

Estimated risk of heart disease for males, 40-50 yrs old HR in 60-85

Privacy Risk of Releasing A(D)

name	gen.	age	HR	BP	
Alice	F	83	65	112	
Bob	М	50	85	135	
Carl	Μ	23	6 <mark>1</mark>	120	

Input D

Algorithm A Output A(D)

Bob

Could A(D) reveal my risk of heart disease? Could this lead to an increase in my insurance premium?

Defining Privacy: Attempt 1

 Mechanism is private if an attacker can not learn too much about an individual beyond what they already know about the individual (without looking at the output of the mechanism)

NOT A GOOD DEFINITION

• Learning principles of nature should not be considered privacy breaches.

Defining Privacy: Attempt 2

Promise of differential privacy "What can be learned about Bob from A(D) is similar to what can be learned from opt-out world"

nam	gen.	age	HR	
Alice	F	83	65	
XXX	XXX	XXX	XXX	
Carl	М	23	61	

D'

Bob's optout world

Differential Privacy

For every pair of inputs that differ in one row

D_1 D_2

For every output ...

Adversary should not be able to distinguish between any D_1 and D_2 based on any O

$$\ln\left(\frac{\Pr[A(D_1) = o]}{\Pr[A(D_2) = o]}\right) \le \varepsilon, \qquad \varepsilon > 0$$

Why pairs of datasets that *differ in one row*?

For every pair of inputs that differ in one row

Simulate the presence or absence of a single record

Why *all* pairs of datasets ...?

For every pair of inputs that differ in one row

 $D_1 \qquad D_2$

For every output ...

0

Guarantee holds no matter what the other records are.

Privacy Parameter ε

Controls the degree to which D_1 and D_2 can be distinguished. Smaller the ε more the privacy (and worse the utility)

How much noise for privacy?

Global Sensitivity of a query *q*: maximum output change for any pairs of neighboring datasets

$$GS(q) = \max_{\forall neighbor(D_1,D_2)} |q(D_1) - q(D_2)|$$

=
$$\max_{D_2 \in dom \ \forall D_1 \in neighbors(D_2)} |q(D_1) - q(D_2)|$$

Any possible database D_2 Add/remove any record from D_2
Theorem: $q(D) + \operatorname{Lap}\left(\frac{GS(q)}{\varepsilon}\right)$ satisfies ε -DP.

Global Sensitivity: COUNT query

- # of people having flu?
- Global sensitivity = 1

			D	
Sex	Height	Age	Disease	Drug X
Μ	6'2''	56	Cancer	3.5
F	5′3″	30	Diabetes	2.3
F	5′9″	24	Healthy	1.0
М	5'3″	36	Flu	4.0
Μ	6'7''	22	Flu	2.2

D

- Solution: $2 + \eta$, where η is drawn from $Lap(\frac{1}{\epsilon})$
 - -Mean = 0
 - Variance = $2/\epsilon^2$

Global Sensitivity: SUM query

• Total usage of drug X?

			D	
Sex	Height	Age	Disease	Drug X
М	6'2''	56	Cancer	3.5
F	5′3″	30	Diabetes	2.3
F	5′9″	24	Healthy	1.0
М	5′3″	36	Flu	4.0
М	6'7''	22	Flu	2.2

D

- Suppose all values x are in [a,b]
- Global sensitivity = b

Utility of Laplace Mechanism

• Laplace mechanism works for any function that returns a real number

• Error: E(true answer – noisy answer)²

Accuracy-privacy Trade-offs

- Many DP algorithms:
 - Laplace mechanism, exponential mechanism, randomized response, gaussian mechanism, sample and aggregate, report noisy max, sparse vector technique, smooth sensitivity mechanism,.....
- Each gives a different accuracy-privacy trade-off
 - e.g. DPComp [HMMCZ16]

Sequential Composition

If $M_1, M_2, ..., Mk$ are algorithms that access a private database D such that each M_i satisfies ε_i -DP

then the combination of their outputs satisfies ε -DP with $\varepsilon = \varepsilon_1 + \dots + \varepsilon_k$

Postprocessing

If *M* is an ε -differentially private algorithm, then any additional post-processing *A* \circ *M* also satisfies ε -differential privacy.

DP in Practice

http://onthemap.ces.census.gov/

https://www.recurve.com/blog/traditional-approaches-to-protecting-energydata-dont-work-heres-what-to-do-instead-part-3-of-3

Tools & Systems for DP

Outline

- Desiderata for Defining Privacy
- Differential Privacy (DP) Basics

Integration of DP into DB & Challenges

Engineering DP into DBMS

- Existing DP database systems:
 - PINQ[SIGMOD09], Airavat[NSDI10], Flex(Uber DP)[VLDB18], Google DP[19]
- Rule-based sensitivity analysis of a query plan

What could go wrong?

- Standard SQL queries that cannot be answered accurately
 - E.g., Non-aggregate/Max/Min query
- Group-by in the end of the query

- Leak active domain!

Select Geo, Count() from Person Group By Geo;							
	Geo	Count					
	CA	2					
	FL	1					
	NC	2					

DB Queries for DP

• Existing solutions:

- Specify groupby keys or Use partition (all groups)

- Open questions:
 - Private data-manipulation language (PDML)
 - How to handle correlated subqueries?

SELECT relp, race, cnt FROM Person P, (SELECT COUNT(*) AS cnt, hid FROM PERSON GROUP BY hid) AS P2 WHERE P2.hid=P.hid

• Additional specification of budget or accuracy

What could go wrong?

• If storing multiple tables instead?

What could go wrong?

- If storing multiple tables instead?
 - Adding/removing rows of different tables
 → different sensitivity result

PINQ	GoogleDP	Flex	PrivateSQL
One-row	User-level	One-row	Constraints-based
(single policy)	(single policy)	(single policy)	(multiple policies)

```
SELECT result.fruit, result.number_eaten
                                               FROM (
                                                 SELECT per person.fruit.
                                                   ANON SUM(per person.fruit count, LN(3)/2) as number eaten,
                                                   ANON_COUNT(uid, LN(3)/2) as number_eaters
SELECT fruit, COUNT(fruit)
                                                   FROM(
                                                     SELECT * , ROW_NUMBER() OVER (
FROM FruitEaten
                                                                                                                                   \gamma_{fruit}^{Count}
                                                       PARTITION BY uid
GROUP BY fruit;
                                                       ORDER BY random()
                                                     ) as row_num
                                                     FROM (
                                                                                                                             Semijoin<sub>uid</sub>
                                                       SELECT fruit, uid, COUNT(fruit) as fruit_count
                                                       FROM FruitEaten
                                                       GROUP BY fruit, uid
                                                     ) as per person raw
                                                                                                                   FruitEaten
                                                                                                                                                  User
                                                   ) as per_person
                                                 WHERE per_person.row_num <= 5
                                                 GROUP BY per person.fruit
                                               ) as result
                                               WHERE result.number_eaters > 50;
```

https://github.com/google/differentialprivacy/tree/main/cc/postgres

Edge-privacy: hide the presence of an edge (a row in edge table)

Node-privacy: hide the presence of a node and all edges incident to it. (a row in node table + edges)

Person-privacy: hide properties of people **Household-privacy**: hide properties of households and the people within them.

Policy: A specification of the base relation that is the primary private object

- Key technical insight: leverage foreign key constraints to infer how change to primary table affects sensitivity of query (even a query that does not directly involve primary table!)
- Current limitation: foreign key constraints must be *acyclic*

• Policy: Person

V:= SELECT * FROM PERSON WHERE PERSON.Age>17;

• Policy: Household

V:= SELECT * FROM PERSON WHERE PERSON.Age>17;

Semi-join Rewrite

• Policy: Household

- Existing solutions:
 - Extend privacy policies via foreign key constraints in multi-relational DB

- Open questions:
 - Privacy data-definition language (PDDL)
 - How to define privacy with general constraints?
 - How to automatically enforce the privacy policies?

What else could go wrong?

High sensitivity for join query!
What if *maxF_{HID}* is not public?

• Existing solutions:

PINQ	GoogleDP	Flex	PrivateSQL
Grouping	Manually	Smooth	Truncation +
before join	specified	sensitivity	automatically
	bound +		learned thresholds;
	sampling		key tracking

View Rewrite with Truncation Operator

• Add a truncation operator $\tau_{HID,k}(\cdot)$ to bound the max multiplicity of join key

• Automatically learn the optimal *k* to minimize the total error

Handling Join Queries

- Existing solutions:
 - Smooth-sensitivity, truncation/Lipchitz extension, sampling, key-tracking
- Open questions:
 - Which algorithm to use?
 - Physical implementation of DP into DBMS?
 - How to support key-tracking in the query plan?
 - How to efficiently compute tighter sensitivity upper bound for better accuracy?

What else could go wrong?

- Handle multiple queries:
 - Unbounded privacy loss or stop query answering
- Existing solutions:
 - General DP views to answer multiple queries [KTHFMHM, VLDB19]
 - Cache historical query answers [MHRH, TPDP20]
- Open questions:
 - How to ensure consistency between queries?
 - How to allocate privacy budget among queries?
 - How to pick DP algorithms for multiple queries?

General Implementation Issues

- Side channel attacks
 - Adversary can observe answer to their question, response time, system decision to execute the query or deny it [HPN SEC11]
- Randomness & floating-point issues

 Laplace mechanism [Mironov CCS12], Exponential mechanism [Ilvento CCS20]

Summary of Open Questions

- Design of Private DDL and DML
 - Protect privacy at correct resolution
 - Prevent unsafe/non-private query
 - Provide better accuracy for complex queries
- DP integration into DB
 - Add on top of existing DB systems
 - Reimplement DP components (e.g. query plan, query rewriting, key tracking, cache/synthetic data) for better utility and/or performance

MODULE 3 SYSTEM INTEGRATION & OPTIMIZATION

Overview

- Part 1: DBMS Security and Privacy
- Part 2: State-of-the-Art Solutions
- Part 3: Open Challenges

Part 1: DBMS Security and Privacy

Security and Privacy (S&P) Settings

Client/Server

Untrusted Cloud

- Column-at-a-time access control policy
- Systems behave exactly like a standard DBMS from client's perspective

Why can't I just add a password to my DBMS? And use encrypted storage?

- Your attack surface is the entire stack
- Your data may reside on untrusted cloud servers
- We need to re-architect our systems with security and privacy at the forefront

Naïve DBMS deployment on an untrusted cloud

Regulatory compliance ≠ meaningful S&P guarantees!

What could go wrong?

- <u>Storage</u>: National Security Letter compels service provider to decrypt data
- <u>Query processing</u>: insider threat sees data-dependent query traces and result sizes
- <u>Client side</u>: rogue user systematically queries DB to deduce its private contents

What about existing work from the security and privacy community?

- Existing S&P solutions are piecemeal they address specific steps in the DBMS workflow
 - MPC & TEE: Protects data *during computation*
 - DP: Protects data when *releasing results*
- Composing these techniques is non-trivial

Where do we come in?

- To date we've mostly focused on making the DBMS fast and scalable to great success!
- S&P is usually an afterthought
- We have a lot to offer in this emerging space of making privacy-preserving analytics practical and usable

End-to-end S&P guarantees

• Covers from when a client submits a query to when they receive their results

Efficient

• Offers performance comparable to that of current DBMSs

Robust

• Supports ad-hoc query workloads and diverse user needs

Usable

• UI like that of a standard DBMS for low barrier to entry. Understandable S&P guarantees.

DBMS Goals

- Rigorous, explainable guarantees of:
 - Privacy of storage and computation over data
 - Privacy of data itself, esp. under repeated querying
- Maximize:
 - Query result accuracy
 - The speed of query execution

Approach #1: Secure Computation

- MPC & TEEs protect data during query evaluation with:
 - Data encrypted in flight
 - Oblivious, data-independent execution transcript
- Useful for query processing in untrusted cloud
- *MPC is really slow!* 1,000X+ *slower than running in the clear*
- TEEs require specialized hardware and depends on chip vendors to have correct implementations

Approach #1: Secure Computation

- MPC & TEEs do not protect data during data release
- Repeated queries of a MPC/TEE-only system leaks the private data distribution
- *Revealing any data-dependent computation, such as intermediate result sizes, leaks private information*

Approach #2: DP

- Differential privacy reveals statistics about DB records while withholding info about individual input tuples [Dwork06]
- Injects precisely calibrated levels of noise into query answers proportional to individual contributions
- It is composable.
- Cumulative information leakage subject to a privacy budget, ϵ

Approach #2 : DP

- DP-only systems add noise to either the query result computed by the server or the input data from data owners
- Adding noise to the query result *requires a single data owner* that serves as a trusted server
- When considering multiple data owners, applying DP to input data adds *error proportional to the number of owners*

Problem 1: Preventing Side Channel Attacks

Problem 1: Preventing Side Channel Attacks

Access Pattern Leakage	<u>Volume Leakage</u>	<u>Timing Leakage</u>
Memory locations accessed during computation	Size of computed results	Time required for computation
→ Leaks frequency of values in source data	\rightarrow Leaks number of records processed at each operator	→ Leaks time needed to process output of each operator

Side channel leakage reveals distribution of values in private source data

Problem 2: Properly Composing Techniques

Problem 2: Properly Composing Techniques

Part 2: State-of-the-Art Solutions

Conclave: Secure Multi-Party Computation on Big Data

- Compiler for relation queries that accelerates secure computation
- Instead of directly converting SQL queries into secure computation, transforms queries into a combination of data-parallel, local cleartext processing and small MPC steps

Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell, Mayank Varia, Andrei Lapets, and Azer Bestavros. Conclave: secure multiparty computation on big data. *EuroSys* 2019.

Conclave: Secure Multi-Party Computation on Big Data

- Compiler for relation queries that accelerates secure computation
- Instead of directly converting SQL queries into secure computation, transforms queries into a combination of data-parallel, local cleartext processing and small MPC steps
- Prevents side-channel attacks
- Improves speed through less MPC
- Still requires some expensive MPC
- Only protects data during computation

Opaque: An Oblivious and Encrypted Distributed Analytics Platform

- Distributed analytics platform built on Spark that utilizes TEEs for oblivious execution
- Introduces oblivious relational operators for rule and cost-based query optimization with security and privacy guarantees

Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa, Joseph E. Gonzalez, and Ion Stoica. Opaque: An oblivious and encrypted distributed analytics platform. *USENIX* 2017.

Opaque: An Oblivious and Encrypted Distributed Analytics Platform

- Distributed analytics platform built on Spark that utilizes TEEs for oblivious execution
- Introduces oblivious relational operators for rule and cost-based query optimization with security and privacy guarantees
- Prevents side-channel attacks
- Improves speed through TEEs
- Requires specialized hardware
- Only protects data during computation

Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa, Joseph E. Gonzalez, and Ion Stoica. Opaque: An oblivious and encrypted distributed analytics platform. *USENIX* 2017.

Shrinkwrap: Secure Query Execution with DP Guarantees

Extended S&P guarantees with DP to cover:

- Prior knowledge of data owners wrt query answers
- Cumulative privacy loss from repeated querying
- Collusion among the data owners and the client

Reveal noisy intermediate cardinalities at runtime for speedup

Noise query answers in MPC, true result revealed to no one

Johes Bater, Xi He, Will Ehrich, Ashwin Machanavajjhala, and Jennie Rogers. Shrinkwrap: efficient SQL query processing in differentially private data federations. *VLDB* 2018.

Shrinkwrap: Secure Query Execution with DP Guarantees

Extended S&P guarantees with DP to cover:

- Prior knowledge of data owners wrt query answers
- Cumulative privacy loss from repeated querying
- Collusion among the data owners and the client
- Prevents side-channel attacks
- Improves speed through DP volume
- Requires user-defined trade-offs
- Limits on repeated querying

Johes Bater, Xi He, Will Ehrich, Ashwin Machanavajjhala, and Jennie Rogers. Shrinkwrap: efficient SQL query processing in differentially private data federations. *VLDB* 2018.

$CRYPT\epsilon$

- Crypto-assisted system that combines MPC with DP to execute database queries over data collected from multiple data owners
- Achieves strong accuracy guarantees without requiring data owners to upload private data to a central trusted data collector

Amrita Roy Chowdhury, Chenghong Wang, Xi He, Ashwin Machanavajjhala, and Somesh Jha. Crypte: Crypto-assisted differential privacy on untrusted servers. *SIGMOD* 2020

$CRYPT\epsilon$

- Crypto-assisted system that combines MPC with DP to execute database queries over data collected from multiple data owners
- Achieves strong accuracy guarantees without requiring data owners to upload private data to a central trusted data collector
- Ensures privacy through DP
- Improves accuracy through MPC
- Requires expensive MPC computation
- Only supports linear, aggregate queries

Amrita Roy Chowdhury, Chenghong Wang, Xi He, Ashwin Machanavajjhala, and Somesh Jha. Crypte: Crypto-assisted differential privacy on untrusted servers. *SIGMOD* 2020

Part 3: Open Challenges

Growing Databases

- Additional leakages: Update pattern.
- Revealing exact update pattern could lead to privacy breach.
- Require further countermeasures that hides update pattern.

IoT Sensor: WiFi access point, smart light bulb, population counter, etc.

Real-world Privacy Breach

Real-world Privacy Breach

- The event time is strongly tied with the backup time (database update time).
- An adversary can breach privacy by using the timing information of updates.
- This type of attack generalizes to any event-driven update where the event time is tied to the data upload time.
- SIGMOD21 paper: DP-Sync

Transactions

• Additional requirements (ACID)

Query Interfaces

- Additional user parameters (e.g., privacy budget, algorithm selection)
- Requires deep DP and MPC knowledge on the part of clients

Floating Point Support

- With MPC, doable but slow
- With DP, many attacks on floating point implementations